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A quantum critical point (QCP) develops in a material at absolute zero when

a new form of order smoothly emerges in its ground state. QCPs are of great

current interest because of their singular ability to influence the finite tempera-

ture properties of materials. Recently, heavy-fermion metals have played a key

role in the study of antiferromagnetic QCPs. To accommodate the heavy elec-

trons, the Fermi surface of the heavy-fermion paramagnet is larger than that

of an antiferromagnet1,2,3. An important unsolved question concerns whether

the Fermi surface transformation at the QCP develops gradually, as expected if

the magnetism is of spin density wave (SDW) type4,5, or suddenly as expected

if the heavy electrons are abruptly localized by magnetism6,7,8. Here we report

measurements of the low-temperature Hall coefficient (RH) - a measure of the

Fermi surface volume - in the heavy-fermion metal YbRh2Si2 upon field-tuning

it from an antiferromagnetic to a paramagnetic state. RH undergoes an increas-

ingly rapid change near the QCP as the temperature is lowered, extrapolating

to a sudden jump in the zero temperature limit. We interpret these results in

terms of a collapse of the large Fermi surface and of the heavy-fermion state

itself precisely at the QCP.
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The compound YbRh2Si2 investigated here appears to be one of the best suited heavy-

fermion metals known to date to study the evolution of the Hall effect across a QCP.

Magnetic susceptibility and specific heat indicate that it orders antiferromagnetically via

a second-order phase transition at very low temperatures (TN = 70 mK)9. The antiferro-

magnetic nature of the transition is supported by NMR data10. Neutron scattering exper-

iments to directly detect the magnetic order are, presumably due to the smallness of the

ordered moment11, not available to date. The Néel temperature TN is continuously sup-

pressed down to the lowest experimentally accessed temperatures by application of a small

magnetic field (B1c ≈ 0.7 T for a field along the magnetically hard c-axis, B2c ≈ 60 mT

for a field within the easy tetragonal plane)12. In addition, isothermal magnetostriction

measurements indicate that the transition remains of second order down to at least 15 mK

(ref. 13). Although a change from second to first order at even lower temperatures can, of

course, not be strictly ruled out the non-Fermi liquid behaviour observed for three decades of

temperature (10 mK< T < 10 K)12 is best described within a quantum critical picture. The

use of tiny fields permits one to reversibly access the QCP without the introduction of addi-

tional disorder and without altering the character of the underlying zero-field transition14.

Moreover, unlike for several other heavy-fermion compounds15 (and the high-Tc supercon-

ductors), the QCP is not hidden by superconductivity. This is in spite of the high quality of

the YbRh2Si2 single crystals investigated here (residual resistivities of ≈ 1 µΩcm, ref. 12).

The scaling analysis of the thermodynamic and dynamical properties (specific heat, magnetic

susceptibility, electrical resistivity) suggests12 that the field-induced QCP in YbRh2Si2 is of

local6,7,8 rather than of itinerant4,5 type, similar to the doping-induced QCP in CeCu6−xAux

(ref. 6). Hall-effect measurements may be used to access a static electronic property, namely

the Fermi surface volume, for which clear-cut theoretical predictions exist for different types

of QCP7,8,16. The study presented here is the first systematic Hall-effect measurement at a

heavy-fermion QCP.

The Hall effect, usually a rather complex quantity, appears to be surprisingly simple here,

both in vanishingly small and in finite magnetic fields. Outside the quantum critical region

the Hall resistivity is linear in field resembling the behaviour of simple metals. Furthermore,

our analysis of the temperature-dependent Hall coefficient in terms of the anomalous Hall

effect (Fig. 1a, Methods, and refs. 17 and 18) reveals that the low-temperature (below about

1 K) Hall coefficient is dominated by its normal contribution. These features imply that
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the low-temperature Hall coefficient can be used, to a good approximation, as a measure of

the Fermi surface volume. In the absence of photoemission and de Haas-van Alphen studies

(the latter presumably never being available because of the very low critical magnetic field)

as well as of electronic bandstructure calculations this is, so far, the only information on the

Fermi surface volume of YbRh2Si2. At zero magnetic field, the data measured at the lowest

temperatures tend to saturate at the value of the normal Hall coefficient extracted from the

data between 7 K and room temperature (Fig. 1a). This indicates that, at B = 0, the Fermi

surface volume is the same at the lowest temperatures as it is at high temperatures. Thus,

even though there is evidence for the onset of Kondo screening at approximately 20 K (refs. 9

and 12) and for surprisingly large effective quasiparticle masses in the antiferromagnetically

ordered state close to the QCP12, the local moments do, at the lowest temperatures and

at B = 0, not appear to be incorporated into the Fermi surface. In the static sense1,2,3,

YbRh2Si2 may, in its unconventional antiferromagnetic state at B < Bc, therefore not be

classified as a “heavy-fermion” metal.

In the intermediate temperature range, between approximately 70 mK and 7 K, there is

an additional contribution ∆RH which is not due to the anomalous Hall effect (Fig. 1a). In

the main part of Fig. 1b we show that, between 0.7 and 5 K, the cotangent of the Hall angle

is linear in T 2 (while ∆ρ ∝ T ), indicating that the longitudinal and transverse scattering

rates are different19. This type of behaviour is well known in high-Tc cuprates where it

has been taken as evidence for spin-charge separation19. Note, however, that for YbRh2Si2

the temperature range where this relation holds (inset of Fig. 1b), is narrower than the one

where the non-Fermi liquid (NFL) behaviour ∆ρ ∝ T is observed (from 100 mK to almost

10 K, ref. 12), even if YbRh2Si2 is field-tuned to quantum criticality (green squares in inset).

The same may hold true for CeCoIn5 (ref. 20).

In our field-dependent Hall-effect measurements on YbRh2Si2 the magnetic field plays

dual roles, as both a “tuning” and a “probe” field. On the one hand, the coupling between

the field and the Yb3+ moments tends to align the latter: it is this Zeeman-like coupling

which tunes the ground state of the material, ultimately suppressing the antiferromagnetism

and creating the QCP. On the other hand, the magnetic field also generates a weak Lorentz

force on the underlying electrons which produces the Hall response. The weak orbital cou-

pling responsible for the Lorentz force does not appreciably change the ground state so

that, to a good approximation, we can discuss the two couplings independently. The single
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crystals of YbRh2Si2 are thin platelets oriented along the ab-plane and practical Hall-effect

measurements require a current and Hall voltage lying in this plane. This allows for two

distinct types of experiment, “transverse tuning” where the tuning field B1 is parallel to

the c-axis, perpendicular to the current, and “longitudinal tuning” where the tuning field

B2 lies parallel to the current in the basal plane (cf. schematics in Figs. 2a and b). The

longitudinal field B2 produces essentially no Hall response (see Supplementary Methods 1)

and serves only to tune the state: a separate, crossed probe field δB1 along the c-axis is

required to measure the Hall response. In this longitudinal (crossed-field) experiment, the

Hall resistivity ρH is a direct measure of the field-tuned (linear-response) Hall coefficient

RH(B2)

RH(B2) ≡ lim
B1→0

ρH(B2, B1)/B1. (1)

In the transverse (single-field) case, on the other hand, the magnetic field simultaneously

tunes the state and probes the Hall response and the differential Hall coefficient R̃H(B1) is

R̃H(B1) ≡
dρH(B1)

dB1
=

[

∂ρH(B1)

∂B1

]

orb

+

[

∂ρH(B1)

∂B1

]

zeeman

= RH(B1)+

[

∂ρH(B1)

∂B1

]

zeeman

. (2)

The orbital (“probing”) contribution is, according to the Kubo formalism, just the general-

ized definition of a Hall coefficient (see Supplementary Methods 2). The Zeeman (“tuning”)

term is not related to a readily measurable linear-response quantity.

We first discuss the results of the single-field experiment. Figure 2a displays several

representative isotherms of the Hall resistivity ρH , corrected for its anomalous contribution

ρH,a(B) (see Methods), vs B1. ρH − ρH,a shows a linear low-B1 behaviour with larger and a

linear high-B1 behaviour with smaller slope. The crossover between the two regimes broadens

and shifts to higher B1 with increasing temperature. For a quantitative analysis of the data

we choose R̃H(B) = R∞
H − (R∞

H − R0
H)γ(B) as a fitting function, where R0

H is the zero-field

Hall coefficient and R∞
H is the asymptotic differential Hall coefficient at large fields. γ(B) is

a crossover function that changes from unity at low fields to zero at large fields, which we

parameterize as γ(B) = 1/[1 + (B/B0)
p]. Here, B0 is the crossover field and p determines

the sharpness of the transition, which has a width Γ ∼ B0/p when p is large. For p → ∞,
∫

R̃H(B)dB has a sharp kink at B = B0, corresponding to a step in R̃H(B) itself. The fits

to the data are shown as solid lines in Fig. 2a. For one temperature the derivative of the

fit, corresponding to R̃H(B1), is shown as well. The crossover fields B0 obtained from these

fits are included as red dots in the temperature-field (T − B) phase diagram of YbRh2Si2
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(Fig. 3a). A linear fit to these points (dashed red line in Fig. 3a denoted THall) extrapolates at

zero temperature to the critical field B1c ≈ 0.7 T for the disappearance of antiferromagnetic

order and the QCP. Thus, the crossover is directly related to the QCP. The sharpness of

the crossover is best quantified by the full width at half maximum (FWHM) of dR̃H/dB1,

which represents the change of slope of ρH(B1). The temperature dependence of the FWHM

values is well described by a pure power law, FWHM ∝ T a, a = 0.5 ± 0.1 (inset of Fig. 3a),

suggesting that, at zero temperature, the crossover is infinitely sharp (FWHM = 0).

To understand the origin of this sharp feature, we now turn to the crossed-field measure-

ment of the linear-response Hall coefficient, Eq. (1). The inset of Fig. 2b displays ρH(B1)

curves taken at 65 mK for different values of the longitudinal tuning field B2. With increas-

ing B2 the linear-response Hall coefficient RH decreases. For a quantitative analysis we fit, as

above,
∫

R̃H(B)dB to the ρH(B1) data (solid lines in the inset of Fig. 2b). As opposed to the

single-field experiment, R0
H = RH is now the only parameter to consider. RH , normalized to

its value at the crossover field B0, is plotted in the main panel of Fig. 2b as a function of the

normalized tuning field B2/B0. Data obtained in the same way at 45, 75, and 93 mK are

included as well. RH decreases as a function of B2 by a factor of ≈ 1.5. In a simple one band

model this corresponds to an increase in the charge carrier concentration from ≈ 2 to ≈ 3

holes per YbRh2Si2 formula unit. The crossover sharpens up as the temperature is lowered.

For a quantitative analysis we may now fit the crossover form RH(B) = R∞
H −(R∞

H −R0
H)γ(B)

to the RH(B2) data (solid curves in main panel of Fig. 2b). The R∞
H values obtained for

these four temperatures are included as green triangles in the main part of Fig. 1a, showing

that the Hall coefficient in the field-induced Landau Fermi liquid (LFL) state (cf. Fig. 3a)

at very low temperatures is substantially smaller than in the B = 0 antiferromagnetically

ordered state. The 11B0 and FWHM values obtained from the above fits are included as

green dots in Fig. 3a and its inset. The factor of 11 accounts for the fact that the tuning

field B2 is applied in the easy tetragonal plane of YbRh2Si2 where, due to the magnetic

anisotropy, the action of a magnetic field is known to be ≈ 11 times as strong as along the

magnetically hard c-axis12. For both quantities the green and red data points agree within

the error bars. Thus, the linear Hall response RH(B2) of the crossed-field measurement and

the differential Hall response R̃H(B1) of the single-field measurement can be described by

the same functional form and the respective crossover positions and crossover widths agree

quantitatively. This experimental finding suggests that the second term on the right hand
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side of Eq. (2) plays a minor role, at least in the experimentally accessed part of the T −B

phase diagram. Therefore, here the single-field experiment appears to probe essentially the

same (linear-response) Hall coefficient as the crossed-field experiment. However, there is a

quantitative difference in the jump heights of R̃H(B1) and RH(B2) which probably reflects

the anisotropies in the evolution of the electronic bandstructure under transverse and longi-

tudinal field-tuning21, amplified by the likely presence of a multisheeted, anisotropic Fermi

surface.

The phase diagram in the magnetic field-temperature parameter space can now be il-

lustrated by a 3D representation of dγ(B)/dB (Fig. 3b). γ(B) is calculated at arbitrary

temperatures from the linear B0 vs T fit (dashed red line in Fig. 3a) and a power law fit

(not shown) to the p(T ) data obtained from the fits to ρH(B1) (Fig. 2a) and to RH(B2)

(main panel of Fig. 2b). With decreasing temperature, the dγ(B)/dB curves sharpen up

and their crossover position B0, designated by drop lines, shifts to lower fields such that,

at zero temperature, a δ-function (dashed line in T = 0 plane in Fig. 3b) is situated at the

QCP.

Thus, the extrapolation of our finite temperature data to zero temperature indicates the

presence of a finite discontinuity (“jump”) in the Hall coefficient at the QCP, even though

the change in the magnetic order parameter is infinitesimal11. By contrast, in an itinerant

SDW scenario, the Fermi surface is expected7 to fold over at the QCP; the Hall coefficient

is then continuous across the QCP, evolving gradually with the size of the antiferromagnetic

order parameter, as is indeed observed experimentally22. (For a more quantitative com-

parison, see caption of Fig. 2b.) Our results hint at a sudden reconstruction of the Fermi

surface at the QCP, corresponding to the sudden loss of “mobile” 4f electrons7,8,16. Loosely

speaking, the volume of the Fermi surface has changed discontinuously. Here of course, the

concept of Fermi surface volume needs to be treated with some care, for antiferromagnetism

breaks translational symmetry. YbRh2Si2 may well be an easy-plane incommensurate an-

tiferromagnet, and for this class of antiferromagnet, to linear order in the magnetic order

parameter, the Fermi surface volume is well-defined in the paramagnetic unit cell. From our

data we infer that the antiferromagnetic ground state has a “small” Fermi surface which is

the same as the one extracted from the high-temperature Hall effect data (main panel of

Fig. 1a) while the paramagnetic ground state has a “large” Fermi surface which presumably

counts the new heavy-fermion states injected by the local moments.
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The crossover line THall(B) (Fig. 3) is then interpreted as the finite temperature signa-

ture of the “jump” in the Fermi surface volume. It delineates the position at which a

new large Fermi surface emerges in the incoherent electron fluid. It is interesting that this

pre-cursor to heavy quasiparticle formation takes place at temperatures well above the tem-

perature T ∗ (dashed black curve in Fig. 3a) below which the coherent LFL develops. The

existence of a large Fermi surface in the absence of well-defined quasiparticles is well known

in one-dimensional Luttinger liquids23. It is also reminiscent of the marginal Fermi liquid be-

haviour in cuprate superconductors, where a large Fermi surface is seen in the angle-resolved

photoemission studies, but the scattering rate grows linearly, rather than quadratically, in

temperature24,25. Note also that the crossover line THall(B) does not follow the antiferro-

magnetic transition line TN (B) (Fig. 3a). Indeed, within experimental resolution, the initial

Hall coefficient shows no change at the zero field Néel temperature of 70 mK (Fig. 1a). This

behaviour contrasts dramatically with that expected in an itinerant SDW, where changes

in the Hall coefficient should coincide with the Néel transition - as is indeed observed for

Cr1−xVx (refs. 22 and 26). Thus we may discard the possibility that the observed crossover

in the Hall coefficient of YbRh2Si2 is due to a unit-cell doubling in a symmetry breaking

antiferromagnetic transition. Even though the crossover at THall(B) broadens rapidly with

temperature [cf. FWHM(T ) in the inset of Fig. 3a and width of dγ(B)/dB in Fig. 3b], so that

it can not be followed beyond about 0.5 K, the additional contribution ∆RH to the initial

Hall coefficient (main panel of Fig. 1a) which we attribute to fluctuations of the Fermi surface

volume can be discerned up to much higher temperatures of order 10 K. This is precisely

the temperature below which NFL behaviour is observed in thermodynamic and dynamical

properties9,12. This observation makes it very tempting to hold fluctuations of the Fermi

surface volume responsible for the NFL behaviour observed over this same temperature win-

dow. The fact that the NFL behaviour is observed in the entire phase diagram above TN

and T ∗ (and below 10 K) can be related to the broadness of the crossover. Interestingly,

also the spin fluctuation scale T0 extracted from a logarithmic fit ∆Cp/T ∝ ln(T0/T ) to

the specific heat data for 0.3 K < T < 10 K and the single-ion Kondo temperature (which

marks the onset of magnetic screening) extracted from a magnetic entropy measurement are

of the same order of magnitude9,12.

To summarize we observe a rapid crossover of the Hall coefficient as function of a control

parameter. By extrapolation to T = 0 of both the Hall crossover and the magnetic phase
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transition12, we infer that a large jump of the Hall coefficient occurs at the QCP. We expect

this new insight, made possible primarily by the absence of superconductivity, to have broad

implications for other strongly correlated electron systems27.

Methods

Anomalous Hall effect

In general, the Hall effect of materials containing localized magnetic moments is domi-

nated at high temperatures by an anomalous Hall effect produced by the left-right asymme-

try in incoherent electron scattering processes28. The initial or linear-response Hall coeffi-

cient RH (Hall coefficient in zero-field limit) scales for many materials with the product of

electrical resistivity ρ and magnetic susceptibility χ,

RH = R0 + Cρχ (3)

where R0 is the normal Hall coefficient and C is a constant28. The term Cρχ represents the

anomalous Hall effect due to intrinsic scattering. The temperature-independent extrinsic

anomalous Hall coefficient Rex due to skew scattering by residual defects may be estimated

from

Rex = Cρ0χ0 (4)

where ρ0 is the residual resistivity and χ0 the residual volume magnetic susceptibility28. A

model including crystalline electric field effects valid in the incoherent regime29, on the other

hand, predicts

RH = R0 + Rsχ (5)

instead of Eq. (3). Here Rs is a constant and Rsχ the anomalous Hall-effect term.

In Fig. 1a we have shown that also in YbRh2Si2 the high-temperature Hall coefficient is

dominated by the anomalous Hall effect. Between 7 and 300 K (90 and 300 K), Eq. (3)

[Eq. (5)] holds (cf. inset of Fig. 1a). The R0 value obtained for both models is (2.4 ± 0.1)×

10−10 m3/C which corresponds, in a simple one band model, to a charge carrier concentration

of 2.6 × 1028 m−3 (approximately 2 holes per formula unit of YbRh2Si2). Considering only

the magnetic contribution to ρ in Eq. (3) yields similar values for R0 (ref. 18). Below about

1 K, where the extrapolation of the fit according to Eq. (3) (red dashed curve in Fig. 1a)

becomes temperature independent and saturates at the value of the normal Hall coefficient

R0, the intrinsic anomalous Hall effect is negligible. The extrinsic anomalous Hall effect
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estimated from Eq. (4) with ρ0 ≈ 1 µΩcm and χ0 = 0.0035 (B‖c, T = 40 mK) (ref. 12) is

less than 4% of R0 and thus plays a negligible role. Therefore, below about 1 K, the initial

Hall coefficient of YbRh2Si2 is essentially free of any anomalous contribution.

The anomalous Hall effect in finite magnetic fields may, in analogy with Eq. (3), be

estimated from

ρH,a(B) = Cρ(B)µ0M(B) (6)

where ρ(B) and M(B) are the field-dependent electrical resistivity and magnetization, re-

spectively.

For YbRh2Si2, ρ(B) (not shown) and M(B) (ref. 12) have been measured in the relevant

geometry (B‖c, current I ⊥ c). For the parameter C we use the value extracted from the

temperature dependence of the initial Hall coefficient (inset of Fig. 1a). ρH,a is less than 20%

of ρH at all temperatures and fields.

Correspondence and requests for materials should be addressed to S. P.

(paschen@cpfs.mpg.de).
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6. Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355

(2000).
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Supplementary Methods 1

Hall response from B2

In the crossed-field experiment, we establish a steady state electrical current along x̂, and

apply two perpendicular magnetic fields: a tuning field B2 along x̂ and a probing field δB1

along ẑ. We measure the transverse (Hall) voltage along ŷ. In our experiment, x̂, ŷ, ẑ are

chosen to be the principal axes and, moreover, the crystal is isotropic in the xy-plane. The

currents and voltages are related by the conductivity tensor:



























Jx

Jy

Jz



























=



























σ‖ σxy 0

−σxy σ‖ σyz

0 −σyz σ⊥
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Ex

Ey

Ez



























. (7)

Here we have used σxz = 0, reflecting the absence of magnetic field along ŷ, and adopted

σ‖ to denote σxx and σyy (the slight difference between σxx and σyy induced by a finite B2

can be easily incorporated in our discussion and will not affect our conclusion below) and

σ⊥ = σzz. Solving these equations under the conditions Jz = Jy = 0, we find

RH ≡ lim
B1→0

Ey

JxB1
= lim

B1→0

σxy

σ2
‖B1

×

[

1 +
σ2

yz

σ⊥σ‖

]−1

. (8)

On the right hand side of Eq. (8), the first factor describes the Hall constant in a gedanken

setup in which the field B2 does not produce any Lorentz force while fulfilling the role of

tuning the underlying state. The second factor in principle differs from 1. For an order-of-

magnitude estimate, we can ignore the xy vs z anisotropy and take
σ2

yz

σ⊥σ‖
≈
(

ρH

ρ

)2
. Given

that the field B2 we have applied in the crossed-field experiment is much smaller than the

largest field B1 used in our single-field experiment, ρH here should be much smaller than

6.5×10−10 Ωm, the value shown in Fig. 2a of our Letter to Nature for the temperature range

T < 200 mK. The longitudinal resistivity ρ is of the order 10−8 Ωm. The second factor on

the right hand side of Eq. (8), then, differs from 1 by much less than 5 × 10−3.

To summarize, to an accuracy much better than 0.5%, the initial slope of the ρH vs B1

plot in the crossed-field experiment measures the linear-response Hall coefficient of the state

reached by the finite tuning field B2.
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Supplementary Methods 2

Kubo formalism for differential Hall coefficient

The concept of a differential Hall coefficient is intimately related to underlying current

correlations inside the material. In thermal equilibrium, the “fluctuation dissipation theo-

rem” gives rise to a unique link between the differential response of a system to a field and the

fluctuations of the variable that is coupled to the field. These relationships are determined

by the so-called Kubo formalism1. For example, the differential magnetic susceptibility of a

material is directly proportional to the two-point spin-spin correlation function. The orbital

part of the differential Hall conductivity of a metal can be regarded as a current susceptibility

to small changes in the magnetic field2,

d2Jx = δBδEy

(

dσxy

dB

)

orb

, (9)

where δEy is the electric field along the y-axis and Jx is the Hall current density along the

x-axis. In simple metals, the Lorentz force acting on the electrons grows linearly with the

applied field, giving rise to a simple linear response σxy = dσxy

dB
B. Near a QCP, the velocities

of the quasiparticles are highly sensitive to the field-tuned ground state, so the Lorentz force

changes with the tuning field obliging us to take the field dependence of the differential Hall

coefficient into account.

Fortunately, under general conditions, the Kubo formula enables us to relate the differ-

ential Hall response to the three-point current correlation function2

Qαβγ(q, B) = 〈B|Jα(q)Jβ(−~q)Jγ(ω)|B〉, (10)

where q ≡ (~q, ω) describes the respective frequency ω and wavevector ~q of a probe electric

and magnetic field, Jα is the current density in the α direction at the appropriate frequency

and wavevector and |B〉 denotes the field-tuned ground state of the system. All “anomalous”

contributions to the ground-state Hall conductance can be included into the above expres-

sion, if the Jα are taken to be the full current operators, taking into account the momentum

dependence of the hybridization between conduction and f electrons.3 The relation

Qαβγ(q, B) − Qαβγ(0, B) = ω(qαδβγ − qβδαγ)

(

dσxy

dB

)

orb

(11)

determines the orbital part of the differential Hall conductivity. In practice, it is more

convenient to measure the differential Hall resistivity, which is simply related to the the

13



differential Hall conductivity via the relation dρyx

dB
≡ R̃H(B) = ρ2 dσxy

dB
, where ρ is the electrical

resistivity and ρyx(= ρH) the Hall resistivity. In our experiments the geometry between

the probe field δB1, Hall voltage and injected current is the same in both the transverse

and longitudinal field-tuning configurations, so both
[

∂σH(B1)
∂B1

]

orb
=
[

R̃H(B1)
]

orb
/ρ2 in the

transverse and σxy(B2, B1)/B1 |B1→0= RH(B2)/ρ
2 in the longitudinal configuration measure

the evolution of the same current correlator through the QCP.

1. Kubo, R. Statistical-mechanical theory of irreversible processes. 1. General theory and simple

applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957).

2. Voruganti, P., Golubentsev, A. & John, S. Conductivity and Hall effect in the two-dimensional

Hubbard model. Phys. Rev. B 45, 13945–13961 (1992).

3. Kontani, H. & Yamada, K. Theory of anomalous Hall effect in heavy fermion system. J. Phys.

Soc. Jpn. 63, 2627 (1994).
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FIG. 1: Temperature dependence of the Hall effect of YbRh2Si2. a, Temperature-dependent

initial Hall coefficient RH(T ), obtained from the initial slope of Hall resistivity vs field isotherms

(Fig. 2a). The red curve corresponds to the red fit to the data from the inset. ∆RH designates the

difference between the data and the fit. The green triangles correspond to RH data obtained from

the crossed-field experiment for large values of the tuning field B2 [R∞
H values of fits to RH(B2),

cf. text and Fig. 2b], suggesting that the Fermi surface volume is distinctly larger in the field-

induced paramagnetic than in the antiferromagnetic state. Inset in a, Initial Hall coefficient RH

vs product of electrical resistivity ρ and magnetic susceptibility χ (lower axis) and vs χ (upper

axis), where temperature is an internal parameter. The full red (black) line is a linear fit according

to the anomalous Hall-effect relation Eq. (3) [Eq. (5)] to the data between 7 and 300 K (90 and

300 K), the dashed lines are the extrapolations to T = 0. b, Cotangent of the Hall angle cot ΘH

(≡ ρ
RHB

) as a function of T 2, taken at B = 1 T. The red line (also in the inset) corresponds to

a fit, cot ΘH = C1 + C2T
2, where C1 and C2 are constants. Inset in b, Difference between data

and fit (red line) of main panel. The black line is a guide to the eye. Below 0.7 K, the data

deviate considerably from the fit. The green squares correspond to cot ΘH data obtained from the

crossed-field experiment at the respective crossover fields (B2 = B0), indicating that, closer to the

QCP, these deviations are even stronger. Thus, the cot ΘH = C1 + C2T
2 behaviour appears to

be a property of the regime at elevated temperatures where quantum critical fluctuations start to

influence the physical properties, but it does not extend over the entire temperature region down

to the QCP.
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FIG. 2: Magnetic field dependence of the Hall effect of YbRh2Si2. a, Single-field experiment. Typ-

ical isotherms of the Hall resistivity ρH , corrected for its anomalous contribition ρH,a(B) [Eq. (6)],

vs magnetic field B1 = µ0H1 (‖c-axis). The solid curves represent best fits,
∫

R̃H(B)dB (see text),

to the data. The derivative of the fit at 75 mK is plotted on the right axis. b, Crossed-field

experiment. Initial slope RH , normalized to its value at the crossover field B0, of all measured ρH

vs B1 curves as a function of B2/B0, at 45, 65, 75, and 93 mK. The solid lines represent best fits

(see text) to the data. RH decreases by a factor of ≈ 1.5 upon going from the zero-field antifer-

romagnetic to the field-induced paramagnetic state. In an SDW picture RH is expected to evolve

as the magnetic order parameter7. In YbRh2Si2 the ordered moment at B = 0 was estimated to

be ≈ 0.002 µB/Yb (ref. 11). Thus, the change in RH corresponds to a factor of ≈ 750/µB . The

corresponding change of RH by a factor of ≈ 30/µB observed for the SDW system Cr1−xVx (refs.

22 and 26) was already considered a giant effect, possibly connected with bandstructure nesting

effects30. By comparison, the effect in YbRh2Si2 is about 25 times as large. Even in the absence

of both experimental and theoretical studies of the electronic bandstructure of YbRh2Si2 we judge

this effect far too large to be accounted for within an SDW picture. The same agrument holds

even if the second order transition observed in the measured temperature range (> 15 mK) turned

over into a first order one at T < 15 mK. The inset in b displays ρH vs B1 curves at three different

values of the tuning field B2 = µ0H2 (⊥ c-axis) at 65 mK. The solid lines represent best fits, as in

a. Similar data have been obtained at the other temperatures (not shown). The sketches in a and

b illustrate the experimental set-up.
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FIG. 3: Temperature-field phase diagrams of YbRh2Si2. a, The red data points correspond to

the B0 values (crossover positions in the Hall-effect measurements) determined from the fits to the

data in Fig. 2a (single-field experiment). Note that the horizontal bars represent the error in the

determination of B0 rather than the width of the crossover. The red dotted line denoted THall

is the best linear fit to all data up to 0.5 K. It extrapolates at zero temperature to ≈ 0.7 T, the

critical field B1c for the direction parallel to the c-axis. The green data points correspond to 11B0

determined from the fits to the data in Fig. 2b (crossed-field experiment). The full and dotted black

curve represent the field dependence of the Néel temperature TN and the crossover temperature

T ∗ to a ∆ρ ∝ T 2 law, respectively, as determined from iso-field ρ(T ) data12. The latter differs

qualitatively from the cross-over line determined from a scaling analysis of both specific heat and

resistivity data, yielding Tcross ∝ (B−Bc) (ref. 14). The inset shows the full width at half maximum

(FWHM) of dR̃H(B1)/dB1 in a log-log plot (red points). The red solid line, ∝ T a, a = 0.5 ± 0.1,

is a best fit to these data. As in the main panel, the green dots correspond to the crossed-field

experiment. For both the main panel and the inset, the red and green data points agree within

the error bars. b, 3D representation of the field derivative of the crossover function γ(B) defined

in the text. The coloured curves represent arbitrary isotherms of dγ(B)/dB, obtained using both

the B0(T ) fit of a and a power law fit to the corresponding p(T ) data (not shown). The field B

corresponds to B1‖c or to 11B2 ⊥ c. The positions B0 are designated by broken drop lines and the

black dotted line denoted THall in the T − B plane. The antiferromagnetic phase and the region

where ∆ρ ∝ T 2 are marked as black and hatched areas, respectively, in the T − B plane. At the

lowest temperatures, dγ(B)/dB may be interpreted as indicating the change of the effective carrier

concentration. In the limit T → 0, dγ(B)/dB is a δ-function (dotted line in the T = 0 plane),

separating the states of small and large Fermi surface (FS) at B = B1c = 11B2c.
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